Aula 01 - Versão 2019/2

Sensores e Instrumentação Conceitos Gerais

Profo Engo Hermom Leal Moreira, Msc.

FATEC - Osasco - São Paulo - Brasil

Ago/2019

1 Introdução

A regulagem e a operação das máquinas, as características das peças de reposição e a qualidade do produto final são apenas alguns exemplos de medições que devem ser realizadas por meio de instrumentação eletroletrônica.

A instrumentação é útil para gerenciamento de indicadores de produção, precisão de dados, certificação em sistemas de gestão, avaliação junto a fabricantes e fornecedores de instrumentos de medição, atendimento a requisitos e normas de controle de qualidade, inovação e desenvolvimento tecnológico.

A regulagem e a operação das máquinas, as características das peças de reposição e a qualidade do produto final são apenas alguns exemplos de medições que devem ser realizadas por meio de instrumentação eletroletrônica.

1.1 Definições

Instrumentação é o ramo da engenharia que trata do projeto, fabricação, especificação, montagem, operação e manutenção dos instrumentos para medição e controle das variáveis de processo industrial. Correa, P. V. - 2002.

Instrumentação é o conjunto de dispositivos e técnicas utilizadas para monitorar e/ou controlar fenômenos físicos que ocorrem em um sistema termodinâmico - processo. Brusamarello, V. - 2012.

INSTRUMENTAÇÃO é o conjunto de técnicas de utilização e aplicação de instrumentos de medição, transmissão (sinais), indicação, registro (dados, ruídos) e controle de grandezas ou variáveis físicas (elétricas, mecânicas, hidráulicas, etc) em equipamentos nos processos industriais.

O que é "medir"? Medir é o procedimento experimental pelo qual o valor momentâneo de uma grandeza

física (mensurando) é determinado como um múltiplo e/ou uma fração de uma unidade, estabelecida por um padrão e reconhecida internacionalmente.

Figura 1. Erro de medição.

1.2 Padronização do Sistema de Medidas Internacional

Ojetivos: a. Padronização Internacional (técnica, científica), b. Coerência entre unidades, c. confiabilidade das medições, d. Eliminação barreiras técnicas de comércio, e. desenvolvimento tecnológico, f. qualidade, g. inovação, h. competitividade industrial.

O Sistema Internacional de Unidades (SI) foi criado em 1960 pela 11ª Conferência Geral de Pesos e Medidas (CGPM) e adotado no Brasil em 1962 e ratificado pela Resolução nº 12 de 1988 do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial - Conmetro, como o sistema legal de unidades de medida. Foi determinado igualmente o uso dos múltiplos e submúltiplos daquele sistema, bem como as regras para a escrita dos símbolos.

ag/torre-de-babel/ Figura 2.
Torre de Babel.

O que faltou aos construtores da Torre de Babel? "precisão", "acuracidade", "aferição".

1.2.1 Hierarquia do Sistema de Metrologia

Os sistemas de metrologia possuem uma hierarquia, conforme pode ser visto na figura abaixo:

Figura 3. Hierarquia do Sistema de Metrologia.

A rastreabilidade, f [traceability/ traçabilité, f], é a propriedade do resultado de uma medição ou do valor de um padrão estar relacionado a referências estabelecidas, geralmente padrões nacionais ou internacionais, através de uma cadeia contínua de comparações, todas tendo incertezas estabelecidas.

A comparabilidade dos resultados de medição, f [comparability of measurementresult/ comparabilité du resultats de mesurage, f], é a propriedade dos resultados de medições [ou dos valores de padrões] que os tornam comparáveis porque eles são metrologicamente rastreáveis aos mesmos padrões de referência metrológicos estabelecidos.

1.2.2 Vantagens da Instrumentação Eletroeletrônica

- Tratamento de dados utilizando sinais elétricos;
- Existência de transdutores sensores e atuadores de natureza elétrica;
- Confiabilidade de operação de um sistema instrumentado com recursos eletro-eletrônicos:
- Capacidade de controlar um processo em ?tempo real?:
- Realização de operações multivariáveis de alta complexidade.

Para que ocorra a medição devem exister 3 elementos:

- 1. Sistema numérico (símbolos, caracteres, numeral, binário, decimal, etc).
- 2. Definição da grandeza da medida (velocidade, potência, força, etc).
- 3. Estabelecimento da unidade de base (Sistema Internacional).

1.2.3 Unidades do SI

Grandeza unidade	Símbolo
Comprimento - metro	m
Tempo - segundo	s
Massa - quilograma	kg
Corrente elétrica - ampere	A
Temperatura - kelvin	k
Intensidade luminosa - candela	cd
Quantidade de matéria - mol	mol

Unidades Derivadas				
Grandeza	Unidade	Símbolo	<u>Dimensional</u> analítica	<u>Dimensional</u> sintética
Freqüência	<u>hertz</u>	<u>Hz</u>	<u>1/s</u>	
<u>Força</u>	newton	N	kg·m/s²	
<u>Pressão</u>	pascal	<u>Pa</u>	$\frac{\text{kg}/(\text{m}\cdot\text{s}^2)}{}$	N/m ²
<u>Energia</u>	<u>joule</u>	<u>J</u>	kg·m²/s²	<u>N·m</u>
<u>Potência</u>	watt	W	kg·m²/s³	<u>J/s</u>
Carga elétrica	coulomb	<u>C</u>	<u>A·s</u>	
Tensão elétrica	volt	<u>V</u>	$kg \cdot m^2/(s^3 \cdot A)$	<u>W/A</u>

Figura 4. Derivadas do SI.

FATOR PELO QUAL A UNIDADE É MULTIPLICADA	PREFIXO	SÍMBOLO	
1 000 000 000 000 = 1012	tera	Т	
1 000 000 000 = 109	giga	G	
1 000 000 = 10 ⁶	mega	M	
1 000 - 103	quilo	k	
100 - 10 ²	hecto	h	
10 - 101	deca	da	
0,1 = 10 ⁻¹	deci	d	
$0.01 = 10^{-2}$	centi	c	
$0.001 - 10^{-3}$	mili	m	
0,000 001 = 10-6	micro	μ	
0,000 000 001 - 10 9	nano	n	
0,000 000 000 001 = 10 ⁻¹²	pico	р	

Fonte: Inmetro

Figura 5. Medidas em potências decimais.

Figura 6. Múltiplos e Submúltiplos.

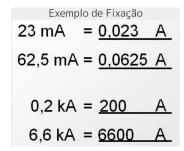


Figura 7. Exemplos.

Referências

[1] BALBINOT, Alexandre; BRUSAMARELLO, Valner J.. Instrumentação e Fundamentos de Medidas. 2a ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 2010, v.1.